
The CRS Method for Weakly Anisotropic VTI Media
Rodrigo Bloot ∗ (CEPETRO/UNILA), Tiago A. Coimbra (CEPETRO/UNICAMP), Jorge H. Faccipieri(CEPETRO/UNICAMP)

and Martin Tygel (IMECC/UNICAMP).

Copyright 2017, SBGf - Sociedade Brasileira de Geofı́sica.

This paper was prepared for presentation at the 15th International Congress of the
Brazilian Geophysical Society, held in Rio de Janeiro, Brazil, 31 July to 3 August, 2017.

Contents of this paper were reviewed by the Technical Committee of the 15th

International Congress of The Brazilian Geophysical Society and do not necessarily
represent any position of the SBGf, its officers or members. Electronic reproduction
or storage of any part of this paper for commercial purposes without the written consent
of The Brazilian Geophysical Society is prohibited.

Abstract

We describe an extension of the Common-Reflection-
Surface (CRS) method for vertical tranversely isotropic
(VTI) anisotropic media. The obtained second-
order coefficients of the extended CRS traveltime
explicitly depend on the Thomsen parameters that
describe the VTI medium. Considering only the
offset direction, the proposed CRS traveltime assumes
a nonhyperbolic traveltime character which can be
compared with VTI nonhyperbolic traveltimes that
considers short-spread normal moveout velocities for
plane horizontal reflectors. Numerical experiments
showed that the proposed approach yields better
traveltime approximations when an estimated stacking
velocity is considered instead of short-spread normal
moveout velocity.

Introduction

Since the pioneering work of Mann (1962), traveltime
expressions designed for stacking along events of interest
have always been a topic of active research in seismic
reflection. Generally referred to as moveouts, these
traveltimes originally aimed at non-converted primary
reflections in isotropic media under the restrictions of
common-midpoint (CMP) configuration and small offsets
(see, e.g., Tygel and Santos, 2007; Iversen, 2006). Under
these considerations, the first moveout, still routinely
applied in today’s seismic processing, is the normal
moveout (NMO)(Taner and Koehler, 1969; Neidell and
Taner, 1971). NMO is the simplest example of a hyperbolic
(second-order Taylor polynomial of squared traveltime)
traveltime.

In the 1980s, technological advances in seismic acquisition
(e.g., larger offsets, ocean-bottom cables) posed the
demand for a better understanding of wave propagation
in anisotropic media, in particular weak elastic anisotropy
(such as transversely isotropy (TI)) that are relevant for
seismic processing (Helbig, 1983; Hake et al., 1984;
Thomsen, 1986; Cohen, 1996; Alkhalifah, 2000; Grechka
et al., 2004; Tsvankin, 2012; Bloot et al., 2013).

The description of anisotropy parameters given by
Thomsen (1986) for TI media opened the analytic
interpretation of anisotropy and allowed the development
of moveouts for large offsets in terms of non-hyperbolic

moveouts. Still within the the CMP configuration, a
number of such anisotropic moveouts have been reported
(Thomsen, 1993; Alkhalifah and Tsvankin, 1995; Tsvankin
and Thomsen, 1994; Tsvankin, 1996; Fomel and Grechka,
2001).

By the end of 1990s, moveouts have been proposed
free from the restriction of the CMP configuration. The
two most prominent ones, all defined for isotropic media,
are the Multifocus (MF) (Landa, 2007; Berkovitch et al.,
2008; Landa et al., 2010) and the Common-Reflection-
Surface (CRS) (Müller and Höcht, 1998; Perroud et al.,
1999; Jäger et al., 2001; Hertweck et al., 2007; Fomel
and Kazinnik, 2012) moveouts. The key motivation for
those moveouts is to make full use of the multicoverage
data (far greater than the CMP data), giving rise of much
cleaner images. To achieve the extension to arbitrary
configurations, the MF and CRS moveouts make use,
besides the NMO velocity, of additional parameters. In 2D,
the total number of parameters are three. In 3D, the CRS
moveout depends on eight parameters. So far, there is
no MF moveout available in 3D. The additional parameters
have two impacts: The first and very positive one is that the
new parameters provide useful kinematical information that
can be applied to several purposes such as, e.g., migration
(Coimbra et al., 2016), velocity building (Duveneck, 2004;
Iversen and Tygel, 2008; Iversen et al., 2012; Gelius and
Tygel, 2015), diffraction imaging (Dell and Gajewski, 2011;
Faccipieri et al., 2016) and data regularization (Höcht et al.,
2009). The second impact, which can be seen as a
drawback, is that a greater number of parameters, as
directly estimated by coherency analysis applied to the
data leads to an increase of computer costs. The search
of computer algorithms to retrieve CRS parameters in an
efficient and reliable way is a topic of current investigation
in the literature (Bonomi et al., 2014; Barros et al., 2015).

In this paper we describe an extension of CRS moveout
for VTI anisotropic media. We show that the obtained
moveout has the same form of the isotropic CRS moveout,
in which the parameters are explicitly given by means
of a multiplying factor that depends on the Thomsen
parameters (Thomsen, 1986) that characterize the VTI
media. Also, strategies to obtain information about
anisotropy for large offsets will be discussed.

Formulation

We consider 2D seismic reflection data acquired along
a single, horizontal line. On that line, source-receiver
pairs are specified by midpoint and half-offset coordinates
(m,h). We consider a super gather of source-receiver
pairs arbitrarily located with respect to a reference or
central zero-offset pair (m0,0). For a target (unknown)
depth reflector and under the assumption of a vertical
transversely isotropic (VTI) medium, our aim is to find an
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approximation of the reflection traveltime (moveout) on that
super gather. For simplicity, we assume primary, non-
converted reflections.

Isotropic medium: Our starting point is the conventional
2D CRS moveout in an isotropic medium, which is given by
(Jäger et al., 2001)

t2(m,h) = [t0 +A∆m]2 +B∆m2 +Ch2 , (1)

Here, ∆m = m−m0 is the midpoint displacement relative
to the central midpoint, m0, and T0 is the traveltime along
the zero-offset ray (two-way traveltime along the normal
ray) from the central point to the target reflector. As seen
below, the parameters A = A(m0,T0), B = B(m0,T0) and
C = C(m0,T0) can be interpreted as kinematical attributes
of the seismic propagation involved (see Equations 14-
15. Moreover, reciprocity associated with symmetric
reflections (see, e.g., Tygel and Santos, 2007) as in the
case of primary non-converted reflections here considered,
explains the absence (vanishing) of a linear coefficient in h.

Remark: Concerning the CRS moveout Equation 1, we
make the following remarks:

(i) In the case of a CMP gather, defined by setting m =
m0 in Equation 1, the CRS traveltime reduces to the
familiar normal moveout (NMO) traveltime, namely,

t2
CMP(h) = t2

CRS(m = m0,h) = t2
0 +Ch2, (2)

In particular, we see that

V 2
NMO = 4/C , (3)

where VNMO is the NMO-velocity at (m0,T0).

(ii) For a laterally invariant velocity distribution V =
V (z) and a planar horizontal reflector, the reflection
traveltime is independent of midpoint m. As
a consequence, the derivatives of traveltime with
respect to m vanish. In this way, A = B = 0, leading
to an identical moveout as the CMP expression 2.

VTI medium: Inspired by the nonhyperbolic moveout
presented by Tsvankin and Thomsen (1994); Alkhalifah
and Tsvankin (1995), which is valid for vertical transversely
isotropic (VTI) media, we propose an extension of the CRS
traveltime to those media in the form

t2
a (m,h) = [t0 +Aa∆m]2 +Ba∆m2 +Cah2 + f (h) , (4)

where

f (h) =
Dah4

1+(Da/Ea)h2 , (5)

and

Ea = 4

(
1

V 2
h
− 1

[V (a)
NMO]2

)
, (6)

in which Vh is an effective horizontal velocity to be explained
later and V (a)

NMO is defined as (compare with equation 3)

[V (a)
NMO]2 = 4/Ca. (7)

Concerning the proposed weak anisotropy VTI moveout 4,
the following considerations can be made:

1. For small offsets: f (h)≈ Dah4;

2. For large offsets: f (h)≈
(

4
vh(0)2 −Ca

)
h2 .

The first property indicates that the f (h) acts as a fourth-
order term of a Taylor expansion in offset direction. The
second property means that, for a horizontal reflector
within a constant VTI medium, the moveout Equation 4
is asymptotically exact in the offset direction as seen in
Tsvankin and Thomsen (1994).

Remark: For the proposed VTI moveout Equation 4, the
same observations made for the isotropic (CRS) moveout
Equation 4 apply. Namely, both for the CMP configuration
(m = m0) as for a planar horizontal reflector, the VTI
moveout Equation 4 reduces to

t2
a (m,h) = t2

0 +Cah2 +
Dah4

1+(Da/Ea)h2 . (8)

We see, thus, that under the the circumstances of CMP
configuration or a planar horizontal reflector, the proposed
VTI moveout has the same form as the one proposed by
Tsvankin and Thomsen (1994); Alkhalifah and Tsvankin
(1995). As shown below, however, our proposed moveout
has different expressions for the parameters.

Weak anisotropic VTI moveout

Transverse isotropic (TI) media, and as a consequence
its particular case of vertical transversely isotropic (VTI)
media, can be described in terms of Thomsen parameters
(Thomsen, 1986). As shown in Bloot et al. (2013), the
eikonal equation, which govern ray tracing in VTI media,
has the form

V 2
(
‖p‖2 +2ξ‖p̂‖2 +2ζV 2

p p2
3‖p̂‖2

)
= 1 , (9)

where V is the vertical velocity of the q−P, q−SV or q−SH
waves. Moreover, ξ and ζ are corresponding wavemode
quantities that depend on the Thomsen parameters ε, δ

and γ. More specifically, we have

q-P : V = Vp , ξ = ε , ζ = δ − ε , (10)
q-SV : V = Vs , ξ = 0 , ζ = ε−δ , (11)
q-SH : V = Vs , ξ = γ , ζ = 0 . (12)

As explained in (e.g., Červený, 2001), in an anisotropic
media, the propagating direction of a ray is described by
the group velocity vector. That vector points to the energy
flux direction of the ray. In general, the group velocity vector
differs in direction and amplitude from the phase velocity.
The latter describes the propagation of wavefronts along
the ray. Also relevant to the ray is the phase velocity vector
which describes the propagation of the wavefront of the ray.
The phase velocity vector is normal to the wavefront.

In the framework of weak anisotropic VTI medium, one
can use paraxial ray approximations to find the following
relations between the isotropic CRS parameters A, B and C
and their counterpart anisotropic ones Aa, Ba and Ca given

Fifteenth International Congress of The Brazilian Geophysical Society



BLOOT ET AL. 3

by

Aa = A =
2sin(β )

V0
, (13)

Ba = H(ξ ,ζ )B = H(ξ ,ζ )
[

2t0 cos2(β )
V0

KN

]
, (14)

Ca = H(ξ ,ζ )C = H(ξ ,ζ )
[

2t0 cos2(β )
V0

KNIP

]
. (15)

Here, β is the angle of the phase velocity (slowness vector)
with respect to the vertical and V0 is the phase velocity
at the measurement surface. The quantities KN and KNIP
represent the wavefront curvatures of the normal (N)-and
normal-incidence-point (NIP)-waves measured at surface
point (m0,0). Under the consideration of the point NIP
where the reference normal ray hits the the target reflector,
the N- and NIP-waves are two conceptual (fictitious) waves
defined as follows: (a) The N-wave starts as a wavefront
with the shape of the target reflector in the vicinity of NIP
and (b) The NIP-wave starts as point source at NIP and
progress to the surface. More details can be found, e.g.,
in Hubral (1983). Finally, H(ξ ,ζ ) denotes the anisotropy
factor given by

H(ξ ,ζ ) =
1+ξ sin2(β )−ζ sin2(β )cos2(β )

1+2ξ sin2(β )+4ζ (Vp/V0)2 sin2(β )cos2(β )
. (16)

In the case of ξ = ζ = 0, we have H(ξ ,ζ ) = 1. As a
consequence, Aa = A, Ba = B and Ca = C.

Remark: The quantities ξ , ζ , Vp and Vh refer to the
reference point (m0, t0) upon which the Equation 4 is
defined. As seen below, these quantities can be inverted
from the parameters Da and Ea.

Expression of parameters Da and Ea

Under the condition that KN ≈ 0, the parameter Da admits
an explicit expression in terms of ξ and ζ . That assumption
means that the obtained approximation is limited to small
curvatures of shallow reflectors. As shown by Fomel and
Grechka (2001), we have

Da =
4t0(Vp/V0)2ζ [1−L1 tan(β )] [cos(β )+ sin(β )]K3

NIP
V0L2

,

(17)
where

L1 =
sin(β )

[
1+2ξ +2ζ (Vp/V0)2 cos2(β )

]
L2

, (18)

in which

L2 = (1+2ξ )sin(β ) tan(β )+ cos(β )

+ 2ζ (Vp/V0)2 cos2(β )sin(β )[tan(β )+ sin(β )] .(19)

Finally, considering the heuristic assumption

V 2
h ≈ [V 2

NMO]2−ζV 2
p , (20)

and substituting on Equation 6, we obtain

Ea =
4

[V (a)
NMO]2−ζV 2

p

− 4

[V (a)
NMO]2

. (21)

Particular case: Horizontal plane wavefront emerging
at the measurement surface

For comparison with the literature, it is interesting to
investigate the situation when β = 0, which includes the
case of reflection of a plane reflector in a VTI medium.
As previously indicated, we have in this case H(ξ ,ζ ) = 1.
Setting β = 0 in equations 15 and 17, we find

Ca =
4

[V (a)
NMO]2

=
2t0
V0

KNIP , (22)

and

Da = 4t0ζ
V 2

p

V 3
0

K3
NIP =

32ζV 2
p

t2
0 [V (a)

NMO]6
. (23)

Substitution of equations 22, 23 and 6 into equation 4
produces the proposed moveout ta for the case β = 0.

t2
a = t2

0 +
4

[V (a)
NMO]2

h2 +
32ζV 2

p

t2
0 [V (a)

NMO]6
×

×

1+
8
(
[V (a)

NMO]2−ζV 2
p

)
t2
0 [V (a)

NMO]4
h2

−1

h4. (24)

We now have the proper conditions to compare the
proposed moveout (equation 24) with the one of (Alkhalifah
and Tsvankin, 1995), here referred to as AT-moveout and
denoted tAT , for P-wave propagation, the latter being given
by

t2
AT = t2

0 +
4

[V (ss)
NMO]2

h2− 32ηh4

[V (ss)
NMO]2[t2

0 [V (ss)
NMO]2 +4(1+2η)h2]

.

(25)
Here, V (ss)

NMO and η are, respectively, the short-spread
normal moveout velocity (Thomsen, 1986) and the
anisotropy parameter

V (ss)
NMO = Vp

√
1+2δ and η =

ε−δ

1+2δ
. (26)

Note that the velocities V (a)
NMO and V (ss)

NMO have very distinct

expressions. The short-spread normal moveout, V (ss)
NMO,

was defined in Thomsen (1986) for a horizontal plane
reflector and V (a)

NMO is related to the NIP-wave curvature
KNIP. In the homogeneous isotropic case both collapse
to the same velocity. However, in the VTI media, the
lateral velocity variation makes the NIP-wavefront change
its format even in homogeneous case.

Analysis of moveout errors: It is now instructive to
investigate the sensitivity of the non-hyperbolic terms in
the above moveouts for a change in NMO velocities only.
For that matter, we analyze the traveltime errors on three
materials described on Table 1, whose experimental values
are reported in Thomsen (1986). For each material, we
consider a synthetic model with a single plane horizontal
reflector, at 2 km depth, for which the seismic data were
simulated by anisotropic ray tracing for 12 km maximum
offset. Only P-waves were considered. Conventional
velocity analysis, using a hyperbolic traveltime, was
performed on the modeled CMP gather and the stacking
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velocity, VST K , was estimated using the heuristic algorithm
Differential Evolution (Barros et al., 2015) considering all
traces.

The theoretical values of V (a)
NMO were computed from the

second-derivative (parameter Ca) of the exact reflected
traveltime for each material. Also, the values for V (ss)

NMO
were computed by equation 26 upon considering the given
values in Table 1.

Table 1: Anisotropic materials considered in the numerical
experiments.

Material v (m/s) ε δ

Taylor sandstone 3368 0.110 -0.035

Dry Green River Shale 3292 0.195 -0.220

Mesaverde sandstone 2998 0.010 0.012

For the case of Taylor sandstone, Figure 1 shows
the relative error in offset direction of the proposed
(black curve) and AT (red curve) moveouts with respect
to the exact (modeled) moveout, both with their
respective theoretical velocities and with the given modeled
anisotropic parameters. The AT moveout outperforms the
proposed moveout, achieving maximum relative error of
1% and good asymptotic approximation. The proposed
traveltime presents less accuracy. In both cases, the
maximum relative error does not exceed 2.5%, even
considering an aperture of 12 km. However, when the
estimated stacking velocity, VST K , is considered, Figure 2
shows that the proposed moveout achieves better accuracy
(less than 4%) than the AT moveout (less than 10%).

Its worth mentioning that the sensitivity of both moveouts
differs when theoretical or estimated velocities are
considered. Note that the proposed moveout shows
smaller discrepancies between the theoretical and
estimated velocities. The comparison of all velocities can
be found in Table 2.

Table 2: Theoretical and estimated velocities obtained for
each material.

Material V (ss)
NMO V (a)

NMO VST K

Taylor sandstone 3248 3377 3657

Dry Green River Shale 2463 2940 3715

Mesaverde sandstone 3033 3037 3029

Figure 3 shows the error considering the theoretical
velocities with their respective traveltimes for Dry Green
River Shale model. Again, the AT traveltime, using V (ss)

NMO,
showed a maximum relative error of 1% yielding a good
asymptotic behavior on larger offsets. The proposed
traveltime, using V (a)

NMO, loses accuracy, presenting a
maximum error of 5%. In the case of using the estimated
velocity, VST K , the pattern observed on the previous
example is present, as shown in Figure 4. Now, the
proposed approach achieved a maximum error of 10%

and AT obtained a maximum error of 30%. Once more,
the comparison of the obtained velocities can be found in
Table 2.
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Figure 1: Taylor sand model: Relative error of the proposed
(black solid line) and AT (red solid line) moveouts with
respect to the exact (modeled) moveout. Theoretical
velocities, V (a)

NMO and V (ss)
NMO, respectively, have been taken.

0 5 10 15
0

0.05

0.1

Offset [km]

R
el

at
iv

e 
E

rr
or

Figure 2: Taylor sand model: Relative error of the proposed
(black dashed line) and AT (red dashed line) moveouts with
respect to hyperbolic moveout with velocity, VST K .

Elliptic anisotropy: When ε = δ , which implies η =
ζ = 0, on Equations 24 and 25, both fourth-order terms
vanishes and as a consequence, we have that V (a)

NMO =

V (ss)
NMO. Despite the fact that this condition does not exists in

practice, it is interesting due to its algebraic simplicity. This
way, we can conclude that V (a)

NMO and V (ss)
NMO will be exactly

the same only for isotropic media where we have ζ = η = 0.

Even knowing that the elliptic case does not occur in reality
it is interesting to observe the condition ε ≈ δ . Mesaverde
immature sandstone described in Table 1 can be seen as a
good example. In this case we have V (a)

NMO ≈ V (ss)
NMO so that

the term Da takes the form

Da = 4t0ζ
V 2

p

V 3
0

K3
NIP ≈

−32(ε−δ )
V 4

p (1+2δ )3t2
0

=
−32η

T 2
0 [V (ss)

NMO]4
. (27)
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Figure 3: Dry Green River shale model: Relative error
of the proposed (black solid line) and AT (red solid line)
moveouts with respect to the exact (modeled) moveout.
Theoretical velocities, V (a)

NMO and V (ss)
NMO, respectively, have

been taken.
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Figure 4: Dry Green River shale model: Relative error of
the proposed (black dashed line) and AT (red dashed line)
moveouts with respect to hyperbolic moveout with velocity,
VST K .

This means that the our approach coincides with the
AT moveout in the case of small offsets. Figure 5 and
6, and also Table 2, shows numerical experiments that
confirms this hypothesis. Moreover, in this cases, the
stacking velocity, VST K , does not differs from the theoretical
velocities.

Discussion and Conclusions

In this work we proposed a CRS traveltime for weakly
anisotropic VTI media. In the 2D situation considered here,
the proposed moveout consists of the addition of two terms:
the first one is a three-parameter CRS-type hyperbolic term
which depends on midpoint and half-offset; the second one
is a two-term non-hyperbolic term that depends on half-
offset only. The new moveout has the same form of the
well-established Alkalifah-Tsvankin moveout, however with
a different definition of the parameters.

In order to compare the new moveout with the literature,
we consider the particular case where the normal ray
(around which the moveout is defined) emerges at the
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Figure 5: Mesaverde immature sandstone model: Relative
error of the proposed (black solid line) and AT (red
solid line) moveouts with respect to the exact (modeled)
moveout. Theoretical velocities, V (a)

NMO and V (ss)
NMO,

respectively, have been taken.
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Figure 6: Mesaverde immature sandstone model: Relative
error of the proposed (black dashed line) and AT (red
dashed line) moveouts with respect to hyperbolic moveout
with velocity, VST K .

surface. This includes the case of a single plane horizontal
reflector within a VTI medium and, in this way, it allows for a
comparison with the well-established established Alkalifah-
Tsvankin (TA) traveltime. Our numerical experiments
considered two cases for the computation of the TA
moveout: the first one used the exact short-spread normal
moveout velocity of the model, the second one used
the more practical situation of approximating that velocity
by the stacking velocity estimated from the data. That
estimation used the conventional velocity analysis with the
hyperbolic moveout. Our results showed that the Alkalifah-
Tsvanking moveout outperforms our proposed moveout
when the exact short-spread normal moveout is taken.
However, the use of the stacking velocity instead leads to
better approximation of the proposed moveout. In addition,
the results also suggest that the larger the difference
between the Thomsen parameters ε and δ , the lower the
accuracy is observed in the Alkalifah-Tsvankin moveout.
Our analysis suggests that this happens because, in in
this case, the short-spread normal moveout velocity differs
more substantially from the estimated stacking velocity.
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This conclusion is in accordance with the reported results
in the literature.
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Müller, T., and G. Höcht, 1998, Common reflection surface
staking method- imaging with an unknown velocity
model: SEG Expanded Abstracts, 17, 1764–1767.

Neidell, N., and M. Taner, 1971, Semblance and other
coherency measures for multichannel data: Geophysics,
36, 482–497.

Perroud, M., P. Hubral, and G. Höcht, 1999, Common-
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